a2 United States Patent

Laviolette

US009048854B2

US 9,048,854 B2
Jun. 2, 2015

(10) Patent No.:
(45) Date of Patent:

(54) UNICODE CHARACTER CONVERSION
USING ONE OF TWO CONVERSION
SERVICES

(71)
(72)

Applicant: BMC Software, Inc., Houston, TX (US)
Inventor: Michel Laviolette, Austin, TX (US)
(73)

")

Assignee: BMC Software Inc., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

1) 13/915,233

(22)

Appl. No.:
Filed: Jun. 11, 2013

Prior Publication Data

US 2014/0266818 Al Sep. 18, 2014

(65)

Related U.S. Application Data

Provisional application No. 61/777,830, filed on Mar.
12, 2013.

(60)

Int. Cl1.

HO3M 7/40
HO3M 7/00
GO6F 1721
HO3M 7/14
U.S. CL

CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(52)
HO3M 7/00 (2013.01); GOG6F 17/21

(2013.01); HO3M 7/14 (2013.01)

(58) Field of Classification Search

CPC GO1L 13/00; GO1L 13/08; GOGF 17/30;
GOGF 17/21; GOGF 17/2217; GOGF 17/2872
USPC oo, 341/50, 51, 106, 87, 88, 67

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,218,252 B2* 5/2007 Fauque 341/50
7,593,938 B2* 9/2009 Lemaretal. ... /1
8,296,747 B2* 10/2012 Ishizaki etal. .. . 717/151
8,600,729 B2* 12/2013 Yangetal. ..o 704/2
2013/0238339 Al* 9/2013 Fleizachetal. 704/260

* cited by examiner

Primary Examiner — Peguy Jean Pierre
(74) Attorney, Agent, or Firm — Brake Hughes Bellermann
LLP

(57) ABSTRACT

Disclosed is a method to convert a Unicode character. The
method includes intercepting a service call for a character
conversion, determining if a character associated with the
service call is a candidate for a first conversion service, if the
character is a candidate for the first conversion service, con-
verting the character using the first conversion service, if the
character is not a candidate for the first conversion service,
converting the character using a second conversion service,
and returning the converted character.

18 Claims, 5 Drawing Sheets

Intercept a service call for a character conversion

Yes

A
Convert character
using reduced
processing routine

l

| s120

Character
can be converted using reduced
processing?

A 4

Return converted character

| — 5105
5110
No
A
Conyert character - 5115
using standard
routine
5125

U.S. Patent Jun. 2, 2015 Sheet 1 of 5 US 9,048,854 B2

. . -~ 5105
Intercept a service call for a character conversion
$110
Yes Character No
can be converted using reduced
processing?
Y Y
Convert character nvert char r
. 5120 Co .e characte - s115
using reduced using standard
processing routine routine
Y
L —S125

Return converted character

FIG. 1

U.S. Patent Jun. 2, 2015 Sheet 2 of 5 US 9,048,854 B2

Determine a location of a control block configured to anchor | — 5205
conversion service routines

; . . . 5210
Determine an address of a conversion service routine &

. X . S215
Save the address of the conversion service routine -

\ 4

Replace the address of the conversion service routine with an |~ 5220
intercept address

FIG. 2

U.S. Patent Jun. 2, 2015 Sheet 3 of 5 US 9,048,854 B2

Obtain an exclusive ENQ for a specific resource to prevent a
verification routine from running while changes are made to
the UCCBs.

|~ $305

Y

Obtain the ALET to the data space from a specific system level | — 5310
name/token.

Y

Locate the address of the CSA-resident copy of the UCCB from
the Callable Services Router Table (which is located from the
CVT) and the UCCB may be unprotected.

Y
Save the original addresses of the conversion routines in the

/// $320
UCCB and replace each UCCB’s fields with the intercept
address.

5325
Generate a new checksum value and replace it in each UCCB
and the CSA-resident copy must be protected.

A 4

Issue a DEQ to allow the verification task in the master |~ 3330
address space to run.

FIG. 3

U.S. Patent Jun. 2, 2015 Sheet 4 of 5 US 9,048,854 B2

: _ |~ 5405
Intercept a service call for a character conversion
5410
Yes Character No
can be converted using reduced
processing?
A\ 4 \ 4
| ress of Replace a s of
Rep ace add-e SO0 5430 epa e eres o) - sa1s
service call with new service call with saved
address address
\4 Y
Forward service call |— $435 Forward service call |— 5420
to new address to saved address
A4 \ 4
Convert character
Convert character | — 5440 \ — 5425
. . using standard
using new routine .
routine
Y
| —S445

Return converted character

FIG. 4

U.S. Patent Jun. 2, 2015 Sheet 5 of 5 US 9,048,854 B2

505
R e

At Least One |
 Processing Unit

510
520 I y
\ Character At Least One
CONVErSioN tew= e oo o— — o— -—-> Memor *——-—}
Module y AAAAAAAA

FIG.5

US 9,048,854 B2

1
UNICODE CHARACTER CONVERSION
USING ONE OF TWO CONVERSION
SERVICES

This application claims the benefit of U.S. Provisional
Patent Application 61/777,830 filed on Mar. 12, 2013 entitled
Unicode Character Conversion, the entire contents of which
are incorporated herein by reference.

FIELD

Embodiments relate to improving Unicode character con-
version performance.

BACKGROUND

A problem with conventional Unicode conversion services
(e.g., ZOS Unicode conversion services) is that the conver-
sion services use more processing resources than necessary to
convert simple character strings. For example, converting
from Extended Binary Coded Decimal Interchange Code
(EBCDIC) to Unicode typically utilizes more processing
resources than necessary. As a result, users of the character
conversion may be charged excess fees for conversion. For
example, using more processing resources than necessary
could impact the rolling four-hour average millions of
instructions per second (MIP) consumption vendors (e.g.,
IBM) use to charge customers for processor time.

Further, excessive time for returning data may result using
more processing resources than necessary to convert simple
character strings. For example, a webpage with data stored
(e.g., in a database) in one format (e.g., a first language) may
need to be displayed in another format (e.g., a second lan-
guage). Conventional conversion services may convert char-
acters slowly (e.g., use more processing resources than nec-
essary) resulting in a slow (e.g., lag) in displaying the
webpage.

There is a need for Unicode conversion services that con-
vert simple character strings without using excessive process-
ing resources.

SUMMARY

One embodiment includes a method to convert a Unicode
character. The method includes intercepting a service call for
a character conversion, determining if a character associated
with the service call is a candidate for a first conversion
service, if the character is a candidate for the first conversion
service, converting the character using the first conversion
service, if the character is not a candidate for the first conver-
sion service, converting the character using a second conver-
sion service, and returning the converted character.

Another embodiment includes a computer readable
medium. The computer readable medium including code seg-
ments causing a processor to perform steps. The steps include
intercepting a service call for a character conversion, deter-
mining if a character associated with the service call is a
candidate for a first conversion service, if the character is a
candidate for the first conversion service, converting the char-
acter using the first conversion service, if the character is not
a candidate for the first conversion service, converting the
character using a second conversion service, and returning the
converted character.

Still another embodiment includes a method to convert a
Unicode character. The method includes determining a loca-
tion of a control block configured to anchor conversion ser-
vice routines, saving at least one address stored in the control

10

15

20

25

30

35

40

45

50

55

60

65

2

block, the at least one address being associated with the
conversion service routines, one of the at least one addresses
including an address for a routine associated with the second
conversion service, and replacing the address for the routine
associated with the second conversion service with an inter-
cept address. The method further includes intercepting a ser-
vice call for a character conversion to the intercept address,
determining if a character associated with the service callis a
candidate for a first conversion service, if the character is a
candidate for the first conversion service, converting the char-
acter using the first conversion service, if the character is not
a candidate for the first conversion service, converting the
character using a second conversion service; and returning
the converted character.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully understood
from the detailed description given herein below and the
accompanying drawings, wherein like elements are repre-
sented by like reference numerals, which are given by way of
illustration only and thus are not limiting of the example
embodiments and wherein:

FIG. 1 illustrates a method for converting characters
according to at least one example embodiment.

FIG. 2 illustrates a method for intercepting a service call
according to at least one example embodiment.

FIG. 3 illustrates another method for intercepting a service
call according to at least one example embodiment.

FIG. 4 illustrates another method for converting characters
according to at least one example embodiment.

FIG. 5 illustrates a block diagram of an apparatus accord-
ing to at least one example embodiment.

It should be noted that these Figures are intended to illus-
trate the general characteristics of methods and/or structure
utilized in certain example embodiments and to supplement
the written description provided below. The use of similar or
identical reference numbers in the various drawings is
intended to indicate the presence of a similar or identical
element or feature.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

While example embodiments may include various modifi-
cations and alternative forms, embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that
there is no intent to limit example embodiments to the par-
ticular forms disclosed, but on the contrary, example embodi-
ments are to cover all modifications, equivalents, and alter-
natives falling within the scope of the claims. Like numbers
refer to like elements throughout the description of the fig-
ures.

According to example embodiments, a more efficient (and
simpler) code path is used for common character conversions.
For example, a more efficient code path may be used for
conversions from US and European EBCDIC to Universal
Character Set (UCS) Transformation Format 8-bit (UTF-8)
American Standard Code for Information Interchange
(ASCII) and vice-versa. Single byte character sets may be
supported.

FIG. 1 illustrates a method for converting characters
according to at least one example embodiment. The method
steps described with regard to FIG. 1 may be executed as
software code stored in a memory (e.g., at least one memory
510 described below) associated with a system (e.g., as shown

US 9,048,854 B2

3

in FIG. 5) and executed by at least one processor (e.g., at least
one processor 505 described below) associated with the sys-
tem. However, alternative embodiments are contemplated
such as a system embodied as a special purpose processor.

For example, the method steps may be performed by an
application-specific integrated circuit, or ASIC. For example,
the ASIC may be configured as one or more of the blocks, or
elements ofthe blocks, (e.g., the character conversion module
520 described below) and/or the apparatus 500. Although the
steps described below are described as being executed by a
processor, the steps are not necessarily executed by a same
processor. In other words, at least one processor may execute
the steps described below with regard to FIG. 1.

As shown in FIG. 1, in step S105 a processor (e.g., at least
one processing unit 505) intercepts a service call for a char-
acter conversion. For example, a webserver may be process-
ing a request for a webpage. The webserver may call a service
to convert a character. For example, data stored in support of
the webpage may be in a EBCDIC format. The webpage may
be configured to use UTF-8. The service call may include an
address of the service, a character to be converted, a “from”
format (e.g., EBCDIC), and a “to” format (e.g., UTF-8). The
intercept may be associated with the address. For example,
the address may be an intercept address (e.g., not a true
address for the service call) or service calls to the address may
be diverted (e.g., utilizing a trap) to another address.

In step S110 the processor determines if the character can
be converted using reduced processing. For example, the
character may be looked-up in a table. For example, the table
may include simple character strings that are candidates for
reduced processing conversion. For example, the table may
include a set of 1-byte (8-bit) character conversion pairs. If
the character is in the table, the character may be a candidate
for conversion using a reduced processing routine. If the
character cannot be converted (e.g., is not in the table) using
reduced processing, processing continues to step S115. Oth-
erwise, processing continues to step S120.

In step S115 the processor converts the character using a
standard routine. For example, the service call may be pro-
cessed by the routine that the service call was originally
intended for (e.g., a ZOS Unicode conversion services rou-
tine). For example, if the service call was to an intercept
address, the service may be sent to the original address. If the
service call was diverted (e.g., by atrap), the service call may
be delivered as originally called by, for example the web-
server. The standard routine then converts the character using
conventional methods.

In step S120 the processor converts the character using a
reduced processing routine. For example, the service call may
be processed by a new routine that utilizes fewer processing
resources than conventional methods. For example, if the
service call was to an intercept address, the service may be
sent to a new address for the new routine. If the service call
was diverted (e.g., by a trap), the service call may be delivered
to the new address for the new routine. The new routine then
converts the character using methods that uses fewer process-
ing resources than conventional methods.

In step S125 the processor returns the converted character.
For example, the converted character, as converted by the
standard routine or the new routine, is returned to the web-
server that called the service for character conversion.

According to example embodiments, a processor may
determine a location of a control block configured to anchor
conversion service routines, save at least one address stored in
the control block, the at least one address being associated
with the conversion service routines, one of the at least one
addresses including an address for a routine associated with

40

45

4

the second conversion service, and replace the address for the
routine associated with the second conversion service with an
intercept address.

FIG. 2 illustrates a method for intercepting a service call
according to at least one example embodiment. The method
steps described with regard to FIG. 2 may be executed as
software code stored in a memory (e.g., at least one memory
510 described below) associated with a system (e.g., as shown
in FIG. 5) and executed by at least one processor (e.g., at least
one processor 505 described below) associated with the sys-
tem. However, alternative embodiments are contemplated
such as a system embodied as a special purpose processor.

For example, the method steps may be performed by an
application-specific integrated circuit, or ASIC. For example,
the ASIC may be configured as one or more of the blocks, or
elements ofthe blocks, (e.g., the character conversion module
520 described below) and/or the apparatus 500. Although the
steps described below are described as being executed by a
processor, the steps are not necessarily executed by a same
processor. In other words, at least one processor may execute
the steps described below with regard to FIG. 2.

As shown in FIG. 2, in step S205 a processor (e.g., at least
one processing unit 505) determines a location of a control
block configured to anchor conversion service routines. For
example, the control block may be a Unicode conversion
control block (UCCB). There may be two copies of, for
example, the UCCB. A first copy (typically a protected copy)
may be located in a Common Service Area (CSA). The CSA
may contain pageable and fixed data areas that are address-
able by active virtual storage address spaces. CSA normally
contains data referenced by a number of system address
spaces, enabling address spaces to communicate by referenc-
ing the same piece of CSA data. Another copy of the UCCB
may be located in a commonly addressable data space. For
example, the processor may locate an address associated with
the UCCB by locating a copy (e.g., the CSA copy) of the
UCCB from a Callable Services Router Table. Typically, the
Callable Services Router Table can be located by following a
pointer beginning from a Communications Vector Table
(VD).

In step S210 the processor determines an address of a
conversion service routine. The address may be a pointer
(e.g., a relative address) or a handle (e.g., name) for the
conversion service (e.g., the standard routine). For example,
the processor may look-up an address in the UCCB.
The address may be a pointer to the standard conversion
routine(s).

In step S215 the processor saves the address of the conver-
sion service routine. For example, the processor may store the
address (or pointer or handle) in a memory or database. For
example, the processor may read the address (or pointer or
handle) in the UCCB and store the address (or pointer or
handle) in a memory or database.

In step S220 the processor replaces the address of the
conversion service routine with an intercept address. For
example, an intercept may be a routine (e.g., software code)
configured to determine whether or not a character can be
converted using reduced processing (e.g., step S110
described above). The routine may be executable code stored
in memory. The executable code may have an associated
address (or pointer or handle). The address (or pointer or
handle) may replace the address of the standard conversion
routine(s). For example, the address (or pointer or handle) of
the executable code configured to determine whether or not a
character can be converted using reduced processing may
replace the address (or pointer or handle) of the standard
conversion routine(s) in the UCCB.

US 9,048,854 B2

5

FIG. 3 illustrates another method for intercepting a service
call according to at least one example embodiment. The
method steps described with regard to FIG. 3 may be executed
as software code stored in a memory (e.g., at least one
memory 510 described below) associated with a system (e.g.,
as shown in FIG. 5) and executed by at least one processor
(e.g., at least one processor 505 described below) associated
with the system. However, alternative embodiments are con-
templated such as a system embodied as a special purpose
processor.

For example, the method steps may be performed by an
application-specific integrated circuit, or ASIC. For example,
the ASIC may be configured as one or more of the blocks, or
elements ofthe blocks, (e.g., the character conversion module
520 described below) and/or the apparatus 500. Although the
steps described below are described as being executed by a
processor, the steps are not necessarily executed by a same
processor. In other words, at least one processor may execute
the steps described below with regard to FIG. 3.

As shown in FIG. 3, in step S305 a processor (e.g., at least
one processing unit 505) obtains an exclusive enqueue (ENQ)
for a specific resource to prevent a verification routine from
running while changes are made to the UCCB(s). An ENQ
may take control of/schedule use of (e.g., restricting others) a
resource. An ENQ may include a major name and a minor
name. A major name may be associated with a resource and a
minor name may be used to identify specific sub-entries
within the resource. For example, in z/OS the processor may
issue an ENQ with a major name parameter of “SYSZCUN”
and a minor name parameter of “IMAGELOCK”. Issuing the
ENQ may prevent other tasks (e.g., a verification routine)
from accessing the UCCB(s).

In step S310 the processor obtains an access list entry token
(ALET) to the data space from a specific system level name/
token. An ALET is an index to an access list. An access list is
a table where each entry represents an address space or data
space that programs can access. For example, the ALET may
be an index to the data space containing a copy of the UCCB.
The ALET may be stored in (e.g., a portion of) the specific
system level name/token. For example, in z/OS the specific
system level name/token name may be the “SYSZCUN-
DATASPACE” and the first four bytes of the token may be the
ALET to the data space containing a copy of the UCCB.

In step S315 the processor locates the address of the Com-
mon Service Area (CSA) resident copy of the UCCB from the
Callable Services Router Table. There may be two copies of,
for example, the UCCB. A first copy (typically a protected
copy) may be located in the CSA. The CSA may contain
pageable and fixed data areas that are addressable by active
virtual storage address spaces. CSA normally contains data
referenced by a number of system address spaces, enabling
address spaces to communicate by referencing the same piece
of CSA data. Another copy of the UCCB may be located in a
commonly addressable data space. For example, the proces-
sor may locate an address associated with the UCCB by
locating a copy (e.g., the CSA copy) of the UCCB from a
Callable Services Router Table. Typically, the Callable Ser-
vices Router Table can be located by following a pointer
beginning from a Communications Vector Table (CVT).

In step S320 the processor saves the original addresses of
the conversion routines in the UCCB and replaces each
UCCB?’s fields with an intercept address. For example, the
address may be a pointer (e.g., a relative address) or a handle
(e.g., name, token) for the conversion service (e.g., the stan-
dard routine). For example, the processor may look-up an
address in the UCCB using the ALET and the address of the
Common Service Area (CSA) resident copy of the UCCB.

10

15

20

25

30

35

40

45

50

55

60

65

6

The address may be a pointer to the standard conversion
routine(s). The processor saves the address of the conversion
service routine. For example, the processor may store the
address (or pointer or handle) in a memory or database. For
example, the processor may read the address (or pointer or
handle) in the UCCB and store the address (or pointer or
handle) in a memory or database.

The processor replaces the address of the conversion ser-
vice routine with an intercept address. For example, an inter-
cept may be a routine (e.g., software code) configured to
determine whether or not a character can be converted using
reduced processing (e.g., step S110 described above). The
routine may be executable code stored in memory. The
executable code may have an associated address (or pointer or
handle). The address (or pointer or handle) may replace the
address of the standard conversion routine(s). For example,
the address (or pointer or handle) of the executable code
configured to determine whether or not a character can be
converted using reduced processing may replace the address
(or pointer or handle) of the standard conversion routine(s) in
the UCCB.

In step S325 the processor generates a new checksum value
and replaces the checksum value in each UCCB. The CSA-
resident copy is then protected (e.g., read-only). Checksum is
an error-checking technique to verity the integrity of data
contained in a file or area of memory. For example, a check-
sum value is generated by adding the value in each field of the
(revised) UCCB(s) with the exception of the checksum field
itself. The resultant sum is then set as the checksum value.

In step S330 the processor issues a DEQ to allow the
verification task in the master address space to run. A DEQ
releases control of a resource previously controlled using an
ENQ. As in the ENQ, a DEQ may include a major name and
a minor name. A major name may be associated with a
resource and a minor name may be associated with a specific
sub-entry within the resource. For example, in z/OS the pro-
cessor may issue a DEQ with a major name parameter of
“SYSZCUN” and a minor name parameter of
“IMAGELOCK”. Issuing the DEQ may allow previously
restricted other tasks (e.g., a verification routine) to access the
UCCB(s).

FIG. 4 illustrates another method for converting characters
according to at least one example embodiment. The method
steps described with regard to FIG. 4 may be executed as
software code stored in a memory (e.g., at least one memory
510 described below) associated with a system (e.g., as shown
in FIG. 5) and executed by at least one processor (e.g., at least
one processor 505 described below) associated with the sys-
tem. However, alternative embodiments are contemplated
such as a system embodied as a special purpose processor.

For example, the method steps may be performed by an
application-specific integrated circuit, or ASIC. For example,
the ASIC may be configured as one or more of the blocks, or
elements ofthe blocks, (e.g., the character conversion module
520 described below) and/or the apparatus 500. Although the
steps described below are described as being executed by a
processor, the steps are not necessarily executed by a same
processor. In other words, at least one processor may execute
the steps described below with regard to FIG. 4.

As shown in FIG. 4, in step S405 a processor (e.g., at least
one processing unit 505) intercepts a service call for a char-
acter conversion. For example, a webserver may be process-
ing a request for a webpage. The webserver may call a service
to convert a character. For example, data stored in support of
the webpage may be in EBCDIC format. The webpage may
be configured to use UTF-8. The service call may include an
address of the service, a character to be converted, a “from”

US 9,048,854 B2

7

format/type (e.g., EBCDIC), and a “to” format/type (e.g.,
UTF-8). The intercept may be associated with the address.
For example, the address of the service call may be an inter-
cept address (e.g., not a true address for the service call) or
service calls to the address may be diverted (e.g., utilizing a
trap) to another address.

In step S410 determines if the character can be converted
using reduced processing. For example, the character may be
looked-up in a table. For example, the table may include
simple character strings that are candidates for reduced pro-
cessing conversion. For example, the table may include a set
of 1-byte (8-bit) character conversion pairs. If the character is
in the table, the character may be a candidate for conversion
using a reduced processing routine. If the character cannot be
converted using reduced processing, processing continues to
step S415. Otherwise, processing continues to step S430.

According to example embodiments, conversions where a
single byte can be translated to a single byte may eligible for
conversion using reduced processing. For example, the pro-
cessor may determine if the character is in a single byte
character format, determine if a character conversion type is
a single byte character format, and if both the character is in
a single byte character format and the character conversion
type is a single byte character format, the character is a
candidate for character conversion using reduced processing.

A translate and test (TRT) instruction may be used with the
TRT table generated for a given character set pair to deter-
mine if a conversion request is eligible for conversion using
reduced processing. If so, a translate (TR) instruction may be
used with the associated TR table to perform the conversion.
Both tables (TRT and TR) are dynamically generated by
calling the z/OS 31-bit Unicode character conversion service
for each byte from x°00” to x‘FF’ for a given character set pair.
The return code from each call to the service is used to build
the TRT table, and if the return code indicates a successful
translation the TR table is updated with the converted value.
These tables may be built for specific pairs of character sets
(e.g., From/to US EBCDIC and UTF-8; From/to European
EBCDIC and UTF-8).

Further, other conditions may make a conversion request
ineligible. For example, requests having a zero buffer length
(e.g., avalid request, but nothing to translate), requests where
the input and output buffers overlap, and requests having
character set pairs that are not supported by the intercept (e.g.,
from US EBCDIC to Japanese double-byte characters).
Therefore, the processor may determine a character length of
the character, and if the character length equals zero, the
character is not a candidate for character conversion using
reduced processing. The processor may read a character type
pair from the service call, the character type pair may include
a character type of the character and a character type of the
converted character. The processor may determine if the char-
acter type pair is in a look-up table of supported character type
pairs, and if the character type pair is in the look-up table, the
character is a candidate for character conversion using
reduced processing.

In step S415 the processor replaces the address of the
service call with a saved address. As discussed above, the
address for a standard character conversion routine may be
read from a UCCB and stored in memory. As a result, if the
character cannot be converted using reduced processing, the
address for the standard character conversion routine may be
read from memory, and for example, replaced the intercept
address in the service call.

In step S420 the processor forwards the service call to the
saved address. For example, the processor may redirect the
service call to the standard character conversion routine. The

20

30

40

45

55

8

processor may use the service call but with the address read
from memory (e.g., the address of the standard character
conversion routine).

In step S425 the processor converts the character using a
standard routine. For example, the service call may be pro-
cessed by the routine that the service call was originally
intended for (e.g., a zOS Unicode conversion services rou-
tine). For example, if the service call was to an intercept
address, the service may be sent to the original address. Ifthe
service call was diverted (e.g., by a trap), the service call may
be delivered as originally called by, for example the web-
server. The standard routine then converts the character using
conventional methods.

In step S430 the processor replaces the address of the
service call with a new address. For example, the service call
may be processed by a new routine that utilizes fewer pro-
cessing resources than conventional methods. The new rou-
tine may be executable code stored in memory. The execut-
able code may have an associated address (or pointer or
handle). The address (or pointer or handle) may replace the
intercept address. For example, the address (or pointer or
handle) of the executable code routine that utilizes fewer
processing resources than conventional methods may replace
the intercept address.

In step S435 the processor forwards the service call to the
new address. For example, the processor may redirect the
service call to the new character conversion routine. The
processor may use the service call but with the address of the
executable code routine that utilizes fewer processing
resources than conventional methods.

In step S440 the processor converts the character using a
new routine. The new routine, when executed by the proces-
sor, may use fewer processing resources than the standard
routine, when executed by the processor. According to
example embodiments, the processor may generate a first
table and a second table based on plurality of single byte
service calls to a four byte conversion routine. Each of the
service calls may include a character set pair, the character set
pair may include a first character type and a second character
type for a same character. Utilizing the first table the proces-
sor may determine if a conversion is supported based on the
character set pair and add a converted value for the character
set pair to the second table if the conversion is supported. The
first conversion service may include a first routine for con-
verting characters, and the first routine may use the second
table to determine a conversion value for the character. Each
of'the converted character set pairs may be assigned a handle.

As discussed above, the translate and test (TRT) instruction
may be used with the TRT table generated for a given char-
acter set pair to determine if a conversion request is eligible
for conversion using reduced processing. If so, a translate
(TR) instruction may be used with the associated TR table to
perform the conversion.

In step S445 the processor returns the converted character.
For example, the converted character, as converted by the
standard routine or the new routine, is returned to the web-
server that called the service for character conversion.

FIG. 5 illustrates a block diagram of an apparatus accord-
ing to at least one example embodiment. As shown in FIG. 5,
the apparatus 500 includes at least one processing unit 505, at
least one memory 510, and a character conversion module
520. The at least one processing unit 505 and the at least one
memory 510 are communicatively coupled via bus 515. The
apparatus 500 may be, for example, an element of a server or
other computing device.

US 9,048,854 B2

9

In the example of FIG. 5, the apparatus 500 may be at least
one computing device and should be understood to represent
virtually any computing device configured to perform the
methods described herein. As such, the apparatus 500 may be
understood to include various standard components which
may beutilized to implement the techniques described herein,
ordifferent or future versions thereof. By way of example, the
apparatus 500 is illustrated as including the at least one pro-
cessing unit 505, as well as at least one memory 510 (e.g., a
computer readable storage medium).

Thus, as may be appreciated, the at least one processing
unit 505 may be utilized to execute instructions stored on the
at least one memory 510, so as to thereby implement the
various features and functions described herein, or additional
or alternative features and functions. Of course, the at least
one processing unit 505 and the at least one memory 510 may
be utilized for various other purposes. In particular, it may be
appreciated that the at least one memory 510 may be under-
stood to represent an example of various types of memory and
related hardware and software which might be used to imple-
ment any one of the modules described herein. Systems and/
or methods described below may include data and/or storage
elements. The data and/or storage elements (e.g., data base
tables) may be stored in, for example, the atleast one memory
510.

The character conversion module 520 may be stored on the
at least one memory 510. For example, the character conver-
sion module 520 may be a plugin software stored on the at
least one memory 510. The character conversion module 520
may store data and/or code that when executed by the at least
one processing unit 505 performs the functions associated
with the character conversion module 520. Alternatively, orin
addition to, the character conversion module 520 may be an
application-specific integrated circuit, or ASIC. For example,
the ASIC may be configured as one or more of the module, or
elements of the modules, of the character conversion module
520. The character conversion module 520 may be a standa-
lone hardware module including a processor (not shown)
configured to perform the associated functions.

The character conversion module 520 may be configured to
convert a character from one format to another utilizing a
standard routine or a reduced processing routine. Additional
aspects of the character conversion module 520 are described
in more detail in the method described herein.

In addition, the method may use two instructions included
in IBM’s mainframe architecture. The two instructions are
the translate and test (TRT) and translate (TR) instructions.
The addresses of the z/OS Unicode conversion services rou-
tines are anchored in a control block in common storage
called the UCCB. In example embodiments, these addresses
are replaced with others pointing to intercept routines that
examine the conversion services call and input data and will
use the TR instruction where possible to perform the conver-
sion. If the intercept determines that this is not possible,
control is passed to the z/OS routine to perform the conver-
sion.

The method of planting the intercept is further described as
follows. There are two copies of the UCCB—one is located in
CSA, the other in a commonly addressable data space. A task
runs in the master address space every 15 minutes to compare
the two copies, taking an SVC dump and issuing a console
message if discrepancies are discovered. This task may also
verify the checksum value generated by logically adding each
field in the UCCB with the exception of the checksum field
itself.

First, an exclusive ENQ for a specific resource may be
obtained to prevent this verification routine from running

10

15

20

25

30

35

40

45

50

55

60

65

10

while changes are made to the UCCBs. Next, the ALET to the
data space may be obtained from a specific system level
name/token. The address of the CSA-resident copy of the
UCCB may then be located from the Callable Services Router
Table (which is located from the CVT) and the UCCB may be
unprotected. The original addresses of the conversion rou-
tines in the UCCB may be saved off and each UCCB’s fields
replaced with the intercept address. The address of the data
space-resident copy of the UCCB is hexadecimal 1000. A
new checksum value may be generated and replaced in each
UCCB and the CSA-resident copy must be protected. Finally,
a DEQ may be issued to allow the verification task in the
master address space to run.

Determining eligibility for character conversion using
reduced processing includes allowing conversions where a
single byte can be translated to a single byte. A TRT instruc-
tion may be used with a TRT table generated for a given
character set pair to determine if a request is eligible. If so, a
TR instruction is used with an associated TR table to perform
the conversion. Both tables (TRT and TR) are dynamically
generated by calling the z/OS 31-bit Unicode character con-
version service for each byte from x°00” to x‘FF” for a given
character set pair. The return code from each call to the
service is used to build the TRT table, and if the return code
indicates a successful translation the TR table is updated with
the converted value. These tables may be built for specific
pairs of character sets (e.g, From/to US EBCDIC and UTF-8;
From/to European EBCDIC and UTF-8).

In other words, before converting a character from one type
to another, it must be determined if the conversion can be
done and, if so, the correct converted value must be known.
Conventionally, the converted value is hard-coded in a table
that is part of the conventional conversion program. This is
the method used by the standard routine. In order to provide
the same result as the standard service, example embodiments
do not hard-code a conversion table in the conversion routine
using reduced processing. By contrast, example embodi-
ments may call the conventional service for every single-byte
character (hex 00 through FF) and build a table dynamically
before replacing the addresses of the service routines in the
UCCB control block. As a result, two tables are created, the
first table indicating if the conversion is possible and the
second table containing the converted value. A pair of such
tables is generated for each supported character type pair and
is done before intercepting the standard service calls.

There may be two conventional service routines that are
called to generate the tables. Both routines perform the same
function, but one is for 31-bit callers while the second is for
64-bit callers. The two service routines return the same con-
version results but different handles. Once the intercepts have
been set, the conversion service according to example
embodiments may interrogate the first table for a given char-
acter set pair to determine if conversion is possible, then use
the second table to perform the conversion.

By generating the tables dynamically using the z/OS ser-
vice itself, maintenance of the tables and human error is
eliminated. This generation may be done prior to planting the
intercept address.

The z/OS service also accepts a handle as input. The handle
produced by the call to the zZOS service is saved off foruse by
the intercept. The handle generated by the 64-bit service is
slightly different, so the 64-bit service is called once for a
character set pair to get the appropriate handle. Other condi-
tions making a request ineligible include: Requests having a
zero buffer length (a valid request, but nothing to translate);

US 9,048,854 B2

11

Requests where the input and output buffers overlap;
Requests having character set pairs that are not supported by
the intercept.

Some of the above example embodiments are described as
processes or methods depicted as flowcharts. Although the
flowcharts describe the operations as sequential processes,
many of the operations may be performed in parallel, concur-
rently or simultaneously. In addition, the order of operations
may be re-arranged. The processes may be terminated when
their operations are completed, but may also have additional
steps not included in the figure. The processes may corre-
spond to methods, functions, procedures, subroutines, sub-
programs, etc.

Methods discussed above, some of which are illustrated by
the flow charts, may be implemented by hardware, software,
firmware, middleware, microcode, hardware description lan-
guages, or any combination thereof. When implemented in
software, firmware, middleware or microcode, the program
code or code segments to perform the necessary tasks may be
stored in a machine or computer readable medium such as a
storage medium. A processor(s) may perform the necessary
tasks.

Specific structural and functional details disclosed herein
are merely representative for purposes of describing example
embodiments. Example embodiments, however, be embod-
ied in many alternate forms and should not be construed as
limited to only the embodiments set forth herein.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another. For
example, a first element could be termed a second element,
and, similarly, a second element could be termed a first ele-
ment, without departing from the scope of example embodi-
ments. As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.

It will be understood that when an element is referred to as
being “connected” or “coupled” to another element, it can be
directly connected or coupled to the other element or inter-
vening elements may be present. In contrast, when an element
is referred to as being “directly connected” or “directly
coupled” to another element, there are no intervening ele-
ments present. Other words used to describe the relationship
between elements should be interpreted in a like fashion (e.g.,
“between” versus “directly between,” “adjacent” versus
“directly adjacent,” etc.).

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of example embodiments. As used herein, the singu-
lar forms “a,” “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises,”
“comprising,” “includes” and/or “including,” when used
herein, specity the presence of stated features, integers, steps,
operations, elements and/or components, but do not preclude
the presence or addition of one or more other features, inte-
gers, steps, operations, elements, components and/or groups
thereof.

It should also be noted that in some alternative implemen-
tations, the functions/acts noted may occur out of the order
noted in the figures. For example, two figures shown in suc-
cession may in fact be executed concurrently or may some-
times be executed in the reverse order, depending upon the
functionality/acts involved.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to

10

15

20

25

30

35

40

45

50

55

60

65

12

which example embodiments belong. It will be further under-
stood that terms, e.g., those defined in commonly used dic-
tionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein.

Portions of the above example embodiments and corre-
sponding detailed description are presented in terms of soft-
ware, or algorithms and symbolic representations of opera-
tion on data bits within a computer memory. These
descriptions and representations are the ones by which those
of'ordinary skill in the art effectively convey the substance of
their work to others of ordinary skill in the art. An algorithm,
as the term is used here, and as it is used generally, is con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of optical, electrical, or mag-
netic signals capable of being stored, transferred, combined,
compared, and otherwise manipulated. It has proven conve-
nient at times, principally for reasons of common usage, to
refer to these signals as bits, values, elements, symbols, char-
acters, terms, numbers, or the like.

In the above illustrative embodiments, reference to acts and
symbolic representations of operations (e.g., in the form of
flowcharts) that may be implemented as program modules or
functional processes include routines, programs, objects,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types and may be
described and/or implemented using existing hardware at
existing structural elements. Such existing hardware may
include one or more Central Processing Units (CPUs), digital
signal processors (DSPs), application-specific-integrated-
circuits, field programmable gate arrays (FPGAs) computers
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, or as is
apparent from the discussion, terms such as “processing” or
“computing” or “calculating” or “determining” of “display-
ing” or the like, refer to the action and processes of a computer
system, or similar electronic computing device, that manipu-
lates and transforms data represented as physical, electronic
quantities within the computer system’s registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system memories or registers or
other such information storage, transmission or display
devices.

Note also that the software implemented aspects of the
example embodiments are typically encoded on some form of
program storage medium or implemented over some type of
transmission medium. The program storage medium may be
magnetic (e.g., a floppy disk or a hard drive) or optical (e.g.,
a compact disk read only memory, or “CD ROM”), and may
be read only or random access. Similarly, the transmission
medium may be twisted wire pairs, coaxial cable, optical
fiber, or some other suitable transmission medium known to
the art. The example embodiments not limited by these
aspects of any given implementation.

Lastly, it should also be noted that whilst the accompany-
ing claims set out particular combinations of features
described herein, the scope of the present disclosure is not
limited to the particular combinations hereafter claimed, but
instead extends to encompass any combination of features or
embodiments herein disclosed irrespective of whether or not

US 9,048,854 B2

13

that particular combination has been specifically enumerated
in the accompanying claims at this time.

What is claimed is:

1. A method to convert a character, the method comprising:

intercepting a service call for a character conversion;

determining if the character is in a single byte character
format;

determining if a character conversion type is a single byte

character format; and

upon determining the character is in a single byte character

format and the character conversion type is a single byte
character format, the character is a candidate for a first
conversion service;

upon determining the character is a candidate for the first

conversion service, converting the character using the
first conversion service;

upon determining the character is not a candidate for the

first conversion service, converting the character using a
second conversion service; and

returning the converted character.

2. The method of claim 1, wherein

the service call is to an address for the first conversion

service, and

the service call is redirected to an address for the second

conversion service if the character is not a candidate for
the first conversion service.

3. The method of claim 1, wherein the service call includes
the character, a character type associated with the character,
and a character type to convert the character to.

4. The method of claim 1, wherein determining if the
character is a candidate for a first conversion service includes:

determining the character length of the character, and

if the character length equals zero, the character is not a

candidate for a first conversion service.

5. The method of claim 1, wherein determining if the
character is a candidate for a first conversion service includes:

reading the character type pair from the service call, the

character type pair including a character type of the
character and a character type of the converted charac-
ter;

determining if the character type pair is in a look-up table

of supported character type pairs; and

if the character type pair is in the look-up table, the char-

acter is a candidate for a first conversion service.

6. The method of claim 1, further comprising:

determining a location of a control block configured to

anchor conversion service routines;

saving at least one address stored in the control block, the

atleast one address being associated with the conversion
service routines, one of the at least one addresses includ-
ing an address for a routine associated with the second
conversion service; and

replacing the address for the routine associated with the

second conversion service with an intercept address.

7. The method of claim 1, wherein

the first conversion service includes a first routine for con-

verting characters;

the second conversion service includes a second routine for

converting characters; and

the first routine, when executed by a processor, uses fewer

processing resources than the second routine, when
executed by the processor.

8. The method of claim 1, further comprising:

generating a first table and a second table based on plurality

of single byte service calls to a four byte conversion
routine, each of the service calls including a character set

14

pair, the character set pair including a first character type
and a second character type for a same character;
utilizing the first table to determine if a conversion is sup-
ported based on the character set pair;
5 adding a converted value for the character set pair to the
second table if the conversion is supported;

the first conversion service includes a first routine for con-

verting characters; and

the first routine uses the second table to determine a con-

version value for the character.

9. The method of claim 8, wherein each of the converted
character set pairs is assigned a handle.

10. A non-transitory computer readable medium including
code segments that when executed by a processor cause the
processor to:

intercept a service call for a character conversion;

determine if the character is in a single byte character

format;

determine if a character conversion type is a single byte

character format; and

upon determining the character is in a single byte character

format and the character conversion type is a single byte
character format, the character is a candidate for a first
conversion service;

upon determining the character is a candidate for the first

conversion service, convert the character using the first
conversion service;

upon determining the character is not a candidate for the

first conversion service, convert the character using a
second conversion service; and

return the converted character.

11. The non-transitory computer readable medium of claim
10, wherein

the service call is to an intercept address, and

the service call is redirected to an address for the second

conversion service if the character is not a candidate for
the first conversion service.

12. The non-transitory computer readable medium of claim
10, wherein the service call includes the character, a character
40 type associated with the character, and a character type to
convert the character to.

13. The non-transitory computer readable medium of claim
10, wherein determining if the character is a candidate for a
first conversion service includes:

determining the character length of the character, and

if the character length equals zero, the character is not a

candidate for a first conversion service.

14. The non-transitory computer readable medium of claim
10, wherein determining if the character is a candidate for a
50 first conversion service includes:
reading the character type pair from the service call, the

character type pair including a character type of the

character and a character type of the converted charac-
ter;

determining if the character type pair is in a look-up table
of supported character type pairs; and

if the character type pair is in the look-up table, the char-
acter is a candidate for a first conversion service.

15. The non-transitory computer readable medium of claim

60 10, wherein the code segments further cause the processor to:

determine a location of a control block configured to
anchor conversion service routines;

save at least one address stored in the control block, the at
least one address being associated with the conversion
service routines, one ofthe at least one addresses includ-
ing an address for a routine associated with the second
conversion service; and

20

25

35

45

55

65

US 9,048,854 B2

15

replace the address for the routine associated with the
second conversion service with an intercept address.

16. The non-transitory computer readable medium of claim

10, wherein

the first conversion service includes a first routine for con-
verting characters;

the second conversion service includes a second routine for
converting characters; and

the first routine, when executed by a processor, uses fewer
processing resources than the second routine, when
executed by the processor.

17. The non-transitory computer readable medium of claim

10, wherein the code segments further cause the processor to:

generate a first table and a second table based on plurality
of single byte service calls to a four byte conversion
routine, each of the service calls including a character set
pair, the character set pair including a first character type
and a second character type for a same character;

utilize the first table to determine if a conversion is sup-
ported based on the character set pair;

add a converted value for the character set pair to the
second table if the conversion is supported;

the first conversion service includes a first routine for con-
verting characters; and

5

15

20

16

the first routine uses the second table to determine a con-
version value for the character.

18. A method to convert a character, the method compris-

ing:

determining a location of a control block configured to
anchor conversion service routines;

saving at least one address stored in the control block, the
at least one address being associated with the conversion
service routines, one ofthe at least one addresses includ-
ing an address for a routine associated with the second
conversion service;

replacing the address for the routine associated with the
second conversion service with an intercept address;

intercepting a service call for a character conversion to the
intercept address;

determining if a character associated with the service call is
a candidate for a first conversion service;

if the character is a candidate for the first conversion ser-
vice, converting the character using the first conversion
service;

if the character is not a candidate for the first conversion
service, converting the character using a second conver-
sion service; and

returning the converted character.

#* #* #* #* #*

